Search results for "Poly-3"
showing 5 items of 5 documents
Influence of substrate and temperature on the biodegradation of polyester-based materials: Polylactide and poly(3-hydroxybutyrate-co-3-hydroxyhexanoa…
2020
[EN] The extended use of polymers from renewable resources such as aliphatic polyesters or polyhydroxyalkanoates boosted the necessity to understand their behaviour in an end-of-life scenario. Although they can be degraded in reasonable shorter times than traditional polymers, understanding the degradation mechanisms under dissimilar conditions will contribute to further developments in this field. This work aimed to study the effect of temperature and substrate in the degradation of polylactide (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) in a simulated laboratory scale to ascertain their contribution, separately or in combination. For this purpose, nine parallel degradat…
Electrochemical fabrication of amorphous TiO2/Poly-3,4 Ethylenedioxythiophene (PEDOT) hybrid structures for electronic devices.
2013
Polymer/metal hybrid multilayers modified Schottky devices
2013
Insulating, polymethylmethacrylate (PMMA), and semiconducting, poly(3-hexylthiophene) (P3HT), nanometer thick polymers/Au nanoparticles based hybrid multilayers (HyMLs) were fabricated on p-Si single-crystal substrate. An iterative method, which involves, respectively, spin-coating (PMMA and P3HT deposition) and sputtering (Au nanoparticles deposition) techniques to prepare Au/HyMLs/p-Si Schottky device, was used. The barrier height and the ideality factor of the Au/HyMLs/p-Si Schottky devices were investigated by current-voltage measurements in the thickness range of 1-5 bilayers. It was observed that the barrier height of such hybrid layered systems can be tuned as a function of bilayers …
Electrochemical Fabrication and Physicochemical Characterization of Metal/High-k Insulating Oxide/Polymer/Electrolyte Junctions
2014
Photoelectrochemical polymerization of poly(3,4-ethylenedioxythiophene), PEDOT, was successfully realized on anodic film grown to 50 V on magnetron sputtered Ti-6 atom % Si alloys. Scanning electron microscopy allowed us to evidence formation of compact and uniform polymer layers on the oxide surface. Photoelectrochemical and impedance measurements showed that photopolymerization allows one to grow PEDOT in its conducting state, while a strong cathodic polarization is necessary to bring the polymer in its p-type semiconducting state. Information on the optical and electrical properties of metal/oxide/polymer/electrolyte junctions proves that PEDOT has promising performance as an electrolyte…